Potential biodegradation of polycyclic aromatic hydrocarbons (PAHs) and petroleum


Cabrerizo, A. et al. Ubiquitous net volatilization of polycyclic aromatic hydrocarbons from soils and parameters influencing their soil–air partitioning. Environ. Sci. Technol. 45, 4740–4747 (2011).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Abdel-Shafy, H. I. & Mansour, M. S. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 25, 107–123 (2016).

Article 

Google Scholar
 

Lundstedt, S. et al. Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites. AMBIO J. Hum. Environ. 36, 475–485 (2007).

Article 
CAS 

Google Scholar
 

Rengarajan, T. et al. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac. J. Trop. Biomed. 5, 182–189 (2015).

Article 
CAS 

Google Scholar
 

Zhao, Y., Duan, F.-A., Cui, Z., Hong, J. & Ni, S.-Q. Insights into the vertical distribution of the microbiota in steel plant soils with potentially toxic elements and PAHs contamination after 60 years operation: Abundance, structure, co-occurrence network and functionality. Sci. Total Environ. 786, 147338 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Roslund, M. I. et al. Half-lives of PAHs and temporal microbiota changes in commonly used urban landscaping materials. PeerJ 6, e4508 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yang, Z.-N. et al. Soil microbiomes divergently respond to heavy metals and polycyclic aromatic hydrocarbons in contaminated industrial sites. Environ. Sci. Ecotechnol. 10, 100169 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ghosal, D., Ghosh, S., Dutta, T. K. & Ahn, Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Front. Microbiol. 1369 (2016).

Ewa, B. & Danuta, M. -Š. Polycyclic aromatic hydrocarbons and PAH-related DNA adducts. J. Appl. Genet. 58, 321–330 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Saadoun, I. M. Impact of oil spills on marine life. Emerg. Pollut. Environ.-Curr. Further Implic. 10, 60455 (2015).


Google Scholar
 

Ivshina, I. B. et al. Oil spill problems and sustainable response strategies through new technologies. Environ. Sci. Process. Impacts 17, 1201–1219 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Sam, K. et al. Prospects of emerging PAH sources and remediation technologies: Insights from Africa. Environ. Sci. Pollut. Res. 30, 1–23 (2023).

Article 

Google Scholar
 

Eldos, H. I., Zouari, N., Saeed, S. & Al-Ghouti, M. A. Recent advances in the treatment of PAHs in the environment: Application of nanomaterial-based technologies. Arab. J. Chem. 15, 103918 (2022).

Article 
CAS 

Google Scholar
 

Haritash, A. & Kaushik, C. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 169, 1–15 (2009).

Article 
CAS 
PubMed 

Google Scholar
 

Rubio-Clemente, A., Torres-Palma, R. A. & Peñuela, G. A. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: A review. Sci. Total Environ. 478, 201–225 (2014).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Adams, G. O., Fufeyin, P. T., Okoro, S. E. & Ehinomen, I. Bioremediation, biostimulation and bioaugmention: A review. Int. J. Environ. Bioremediation Biodegrad. 3, 28–39 (2015).

Article 
CAS 

Google Scholar
 

Kumar, A., Bisht, B., Joshi, V. & Dhewa, T. Review on bioremediation of polluted environment: A management tool. Int. J. Environ. Sci. 1, 1079–1093 (2011).


Google Scholar
 

Nagtode, V. S. et al. Green surfactants (biosurfactants): A petroleum-free substitute for sustainability—Comparison, applications, market, and future prospects. ACS Omega 8, 11674–11699 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Marchand, C., St-Arnaud, M., Hogland, W., Bell, T. H. & Hijri, M. Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil. Int. Biodeterior. Biodegrad. 116, 48–57 (2017).

Article 
CAS 

Google Scholar
 

Chunyan, X., Qaria, M. A., Qi, X. & Daochen, Z. The role of microorganisms in petroleum degradation: Current development and prospects. Sci. Total Environ. 865, 161112 (2023).

Article 
ADS 
PubMed 

Google Scholar
 

Ritz, K. & Young, I. M. Interactions between soil structure and fungi. Mycologist 18, 52–59 (2004).

Article 

Google Scholar
 

Deshmukh, R., Khardenavis, A. A. & Purohit, H. J. Diverse metabolic capacities of fungi for bioremediation. Indian J. Microbiol. 56, 247–264 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kumari, R., Singh, A. & Yadav, A. N. Fungal enzymes: Degradation and detoxification of organic and inorganic pollutants. Recent Trends in Mycological Research: Volume 2: Environmental and Industrial Perspective, 99–125 (2021).

Husaini, A., Roslan, H., Hii, K. & Ang, C. Biodegradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites. World J. Microbiol. Biotechnol. 24, 2789–2797 (2008).

Article 
CAS 

Google Scholar
 

Ravelet, C., Krivobok, S., Sage, L. & Steiman, R. Biodegradation of pyrene by sediment fungi. Chemosphere 40, 557–563 (2000).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Benguenab, A. & Chibani, A. Biodegradation of petroleum hydrocarbons by filamentous fungi (Aspergillus ustus and Purpureocillium lilacinum) isolated from used engine oil contaminated soil. Acta Ecol. Sin. 41, 416–423 (2021).

Article 

Google Scholar
 

Leslie, J. F. & Summerell, B. A. The Fusarium Laboratory Manual (Wiley, Hoboken, 2008).


Google Scholar
 

Kohlmeyer, J. & Volkmann-Kohlmeyer, B. Illustrated key to the filamentous higher marine fungi. (1991).

Woudenberg, J. et al. Alternaria section Alternaria: Species, formae speciales or pathotypes?. Stud. Mycol. 82, 1–21 (2015).

Article 
MathSciNet 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Watanabe, M. et al. Rapid and effective DNA extraction method with bead grinding for a large amount of fungal DNA. J. Food Prot. 73, 1077–1084 (2010).

Article 
CAS 
PubMed 

Google Scholar
 

White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. Guide Methods Appl. 18, 315–322 (1990).


Google Scholar
 

Treves, D. S. Review of three DNA analysis applications for use in the microbiology or genetics classroom. J. Microbiol. Biol. Educ. 11, 186–187 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Arnold, C. & Clewley, J. P. From ABI sequence data to LASERGENE’s EDITSEQ. Sequence Data Analysis Guidebook, 65–74 (1997).

Mount, D. W. Using the basic local alignment search tool (BLAST). CSH Protoc. 2007, pdb.top17 (2007).

PubMed 

Google Scholar
 

Isola, D. et al. Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycopathologia 175, 369–379 (2013).

Article 
PubMed 

Google Scholar
 

Wang, J., Zhan, X., Zhou, L. & Lin, Y. Biological indicators capable of assessing thermal treatment efficiency of hydrocarbon mixture-contaminated soil. Chemosphere 80, 837–844 (2010).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Neff, J. M., Stout, S. A. & Gunster, D. G. Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: identifying sources and ecological hazard. Integr. Environ. Assess. Manag. Int. J. 1, 22–33 (2005).

CAS 

Google Scholar
 

Bhatt, M., Cajthaml, T. & Šašek, V. Mycoremediation of PAH-contaminated soil. Folia Microbiol. 47, 255–258 (2002).

Article 
CAS 

Google Scholar
 

Ramdass, A. C. & Rampersad, S. N. Biodiversity and biocatalyst activity of culturable hydrocarbonoclastic fungi isolated from Marac-Moruga mud volcano in South Trinidad. Sci. Rep. 11, 19466 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Farooq, T. H. et al. Influence of intraspecific competition stress on soil fungal diversity and composition in relation to tree growth and soil fertility in sub-tropical soils under Chinese fir monoculture. Sustainability 13, 10688 (2021).

Article 
CAS 

Google Scholar
 

Yang, T. et al. Fungal community assemblages in a high elevation desert environment: Absence of dispersal limitation and edaphic effects in surface soil. Soil Biol. Biochem. 115, 393–402 (2017).

Article 
CAS 

Google Scholar
 

Kluting, K. et al. Distribution patterns of fungal taxa and inferred functional traits reflect the non-uniform vertical stratification of soil microhabitats in a coastal pine forest. FEMS Microbiol. Ecol. 95, fiz149 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Al-Otibi, F., Al-Zahrani, R. M. & Marraiki, N. Biodegradation of selected hydrocarbons by fusarium species isolated from contaminated soil samples in Riyadh, Saudi Arabia. J. Fungi 9, 216 (2023).

Article 
CAS 

Google Scholar
 

Al-Nasrawi, H. Biodegradation of crude oil by fungi isolated from Gulf of Mexico. J. Bioremed. Biodegrad. 3, 147–152 (2012).

CAS 

Google Scholar
 

Al-Dhabaan, F. A. Mycoremediation of crude oil contaminated soil by specific fungi isolated from Dhahran in Saudi Arabia. Saudi J. Biol. Sci. 28, 73–77 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

El-Hanafy, A. A. E. M. et al. Characterization of native fungi responsible for degrading crude oil from the coastal area of Yanbu, Saudi Arabia. Biotechnol. Biotechnol. Equip. 31, 105–111 (2017).

Article 
MathSciNet 
CAS 

Google Scholar
 

Bezalel, L., Hadar, Y. & Cerniglia, C. E. Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 62, 292–295 (1996).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Andersson, B. E. et al. Incomplete degradation of polycyclic aromatic hydrocarbons in soil inoculated with wood-rotting fungi and their effect on the indigenous soil bacteria. Environ. Toxicol. Chem. Int. J. 22, 1238–1243 (2003).

CAS 

Google Scholar
 

Abd El Aty, A. A., Hamed, E. R., Ahmed, A. & El-Diwany, A. I. Induction and enhancement of the novel marine-derived Alternaria tenuissima KM651985 laccase enzyme using response surface methodology: Application to Azo and Triphenylmethane dyes decolorization. J. Appl. Pharm. Sci. 6, 006–014 (2016).

CAS 

Google Scholar
 

Giardina, P. et al. Laccases: A never-ending story. Cell. Mol. Life Sci. 67, 369–385 (2010).

Article 
CAS 
PubMed 

Google Scholar
 

Widsten, P. & Kandelbauer, A. Laccase applications in the forest products industry: A review. Enzyme Microb. Technol. 42, 293–307 (2008).

Article 
CAS 

Google Scholar
 

Salimova, D. et al. Entomotoxic activity of the extracts from the fungus, Alternaria tenuissima and its major metabolite, tenuazonic acid. J. Fungi 7, 774 (2021).

Article 
CAS 

Google Scholar
 

Borowik, A., Wyszkowska, J. & Oszust, K. Functional diversity of fungal communities in soil contaminated with diesel oil. Front. Microbiol. 8, 1862 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Queissada, D. D., Silva, F. T. D., Penido, J. S., Siqueira, C. D. A. & Paiva, T. C. B. D. Epicoccum nigrum and Cladosporium sp. for the treatment of oily effluent in an air-lift reactor. Braz. J. Microbiol. 44, 607–612 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Potin, O., Rafin, C. & Veignie, E. Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil. Int. Biodeterior. Biodegrad. 54, 45–52 (2004).

Article 
CAS 

Google Scholar
 



This article was originally published by a www.nature.com . Read the Original article here. .